
École Polytechnique Fédérale de Lausanne

A study on the overhead of memory-tagging in compression
libraries

by Edouard Michelin

Bachelor Project Report

Approved by the Examining Committee:

Prof. Dr. sc. ETH Mathias Payer

Thesis Advisor

Andrés Sanchez

Thesis Supervisor

EPFL IC IINFCOM HEXHIVE

BC 160 (Bâtiment BC)

Station 14

CH-1015 Lausanne

June 10, 2023

Acknowledgments

I would like to extend my sincere gratitude to my supervisor, Andrés Sanchez, for his assistance

throughout this project, and for his understanding during the times when I could not work on the

project.

Lausanne, June 10, 2023 Edouard Michelin

2

Abstract

Intel Memory Protection Keys (MPK) is a hardware primitive that allows adding thread-local permis-

sion restrictions on group of pages. Although being acknowledged, MPK is a fairly new technology

which is not extensively used on the application side.

Zlib Memory Protection (ZMP) is a lightweight wrapper of the zlib compression library that aims

to offer heap-based memory isolation between zlib and the rest of the application using it.

Through an ampirical analysis, we run two versions of ZMP implementing two different ways

of applying page-based protection, (1) using the mprotect() system call, and (2) using MPK. We

then use minizip (a portable zip & unzip library using zlib) as our test application and display and

compare the measured overhead introduced by these isolation techniques.

Our evaluation shows that the MPK-based ZMP-enhanced version of minizip carries a negligible

performance overhead (< 0.5%) compared with the unaltered version, whereas the mprotect()
version has been found to suffer from performance impact ranging from 5 to 25% with time spent in

kernel space being up to 2.45x higher.

We also examine alternative compression libraries such as ZStd and discuss the portability of

ZMP to other libraries.

3

Contents

Acknowledgments 2

Abstract 3

1 Introduction 6

2 Background 8

2.1 Inter-Process Memory Isolation . 8

2.2 Intra-Process Memory Isolation . 8

2.3 MPK . 9

2.4 Zlib . 10

3 Design 11

3.1 Original idea . 11

3.2 Isolating the heap . 11

3.3 Isolating the main application . 12

3.4 Inserting the wrapper . 13

4 Implementation 15

4.1 ZMP’s heaps . 16

4.2 Isolating zlib . 16

5 Evaluation 18

5.1 First results . 19

5.2 Adding large allocations . 20

6 Discussion 22

6.1 Memory isolation with mprotect . 22

6.2 MPK, the new alternative? . 22

6.3 Portability of ZMP . 23

6.4 Future work . 23

6.4.1 Heap allocator and deallocator . 23

6.4.2 Isolating the stack . 23

4

6.4.3 Large scale application as a test case . 24

6.4.4 A more general library . 24

7 Conclusion 25

Bibliography 26

5

Chapter 1

Introduction

When performance is a core element of an application or system, softwares are often written in

performant but memory-unsafe languages (C, C++ or Assembly). However, this performance comes

at the cost of possible exposure to memory bugs which can be hard to find and can be used to

craft various attacks. According to recent reports, these memory vulnerabilities accounted for a

noteworthy proportion of all bugs indentified within specific organizations. In particular, Android’s

Jeff Vander Stoep and Chong Zhang reported in a blogpost that more than 75% of the bugs discovered

in Android were attributed to memory issues [7]. Similarly, Google and Microsoft indicated that 70%

of analyzed vulnerabilities were memory-related [2, 11].

A possible strategy to mitigate the impact of these exploit lies in the isolation of the compone-

nents within an application, which is traditionally done in an inter-process manner, involving the

spawning and handling of child processes and inter-process communication (IPC). Nonetheless, this

approach is resource-intensive [11] mainly because it requires the OS to take over. Conversely, there

are usually no restrictions on memory-accesses happening inside the same process. For example,

an application using a library that is vulnerable to Out-Of-Bound (OOB) access could leak sensitive

information stored in a region that the said library may never need to access in the first place.

This is where intra-process memory isolation can greatly improve the situation; a setting in

which we are particularly interested in the potential benefits of memory tagging. For this purpose,

Intel’s MPK provides a means to accomplish this by allowing a process for specific control over

its own accesses to memory, which is done by tagging pages with a so-called protection key and

controlling the access-restrictions inherited by the key via the Protection-Key Rights for User pages

(PKRU) special register [6].

Despite the fact that MPK is an acknowledged technology (being incorporated into recent

Intel CPUs for both client and server, and for which Linux offers an API [8]), its adoption remains

limited on the application side. While our analysis focuses on studying the performance impact of

6

MPK, it is important to note that its integration into applications requires to take other factors into

consideration, albeit the overhead is a significant one.

In this project, we present ZMP. ZMP acts as a wrapper of the zlib compression library while of-

fering an interface to allocate buffers of arbitrary sizes on a safe heap whose access is restricted when

entering zlib. Such restrictions are enforced in two different manners: (1) using the mprotect()
system call, and (2) using memory-tagging as implemented by MPK. The purpose of this project

is to analyze, report, and compare the performance overheads introduced by the application of

intra-process (or domain-based) memory isolation, with the two approches cited above, in the

context of isolating a compression library, which is a memory intensive application.

7

Chapter 2

Background

2.1 Inter-Process Memory Isolation

Modern operating systems provide strong, hardware-enforced, memory isolation between processes.

This inter-process mechanism ensures that a failing or compromised process will not impact other

processes running on the same system, and makes the private (as opposed to shared) memory used

by process A completely opaque to process B. Partitionning an application into multiple processes

in order to isolate untrusted components from trusted ones could provide a secure way to isolate

these memory regions. However, splitting an application into different processes comes with a

certain impact on performance (see results from [9, 15]) that time-sensitive applications cannot

afford. Highly considering the performance cost leads to look for other alternatives which avoid the

need of context-switching.

2.2 Intra-Process Memory Isolation

Intra-process memory isolation is the concept of isolating components (also called domains) of

the same process from each other by restricting their access to some memory regions. For this

purpose, Linux offers the mprotect() system call which changes the access protections for the

calling process’s memory pages included in a given range [12]. Once set up, the program can

continue in user-space and any illegal access will trigger a SIGV. Yet, as modification of the Page

Table Entry (PTE) requires privileged access, there is no other way to apply these protections but

to call mprotect(), which will naturally lead to a context-switch. In the context of intra-process

memory isolation, particularly when there is tight interactions between domains, domain-based

8

context-switches1 can happen at a high rate and will need the intervention of the OS every time in

order to change permission in PTEs. Newer techniques like Intel’s MPK allow these changes to occur

in user-space, thus removing the overhead resulting from context-switches.

2.3 MPK

In its Skylake architecture, Intel introduced a new way of updating the permissions assigned to a

group of pages, without requiring modification of the PTEs. This means that access-restrictions ap-

plied to a group of pages, grouped under the same protection-key (pkey), can be modified while stay-

ing in user-space. All this is done by first getting an available protection-key (with the pkey_alloc()
system call) and then by attributing this key to individual pages — i.e., the granularity of MPK,

often called the granule when referring to memory-tagging, is a page — (with the pkey_mprotect()
system call), which is often refered to as tagging the pages, and modifiyng the permissions that

come with the key. The key is stored in four previously reserved and unused bits in the PTE. This

means that we can assign up to sixteen protection-keys. In reality, the key 0 is reserved and used as

a default value which only leaves fifteen keys to the programmer. Once a page has been tagged, the

programmer can change the restrictions inherited by the key by writing to a special register (making

these changes inherently thread-local) named PKRU, containing restrictions information for the

sixteen protection-keys. To this effect, MPK introduces two new unprivileged instructions to read

(RDPKRU), and write (WRPKRU) to the PKRU register. PKRU is a 32-bit register which holds restriction

values (Write-Disable (WD) and Access-Disable (AD)) for all the sixteen keys; a quarter of its structure

is shown in Figure 2.1. It is the combination of sixteen pairs of (WD|AD) bits with bit 2*i being the

AD bit of pkey i, and bit 2*i+1 its WD bit (∀i ∈ [0,15]), meaning that if PKRU[2*i] == 1 then no

data accesses on the pages tagged with pkey i are permitted, whereas if PKRU[2*i+1] == 1 then

user-mode write accesses are denied [6]. Supervisor-mode write accesses depend on additional

conditions which will not be stated here as it has no purpose for the scope of this project.

Figure 2.1: Schema of the eight first bits of the PKRU register [1].

Other system calls and interfaces are provided by the Linux kernel, all of which are displayed in

Table 2.1. As measured by Soyeon et al., the mprotect() system call takes about 1,094 CPU cycles

1Domain-based context-switch from domain A to domain B refers to the process of changing permissions on the group
of pages belonging to A and B so that the correct accesses are in place.

9

to complete whereas pkey_set() only needs 23.3 [13]; meaning that a single change in the access

permission of a page with mprotect() is fifty times slower than the equivalent 2 using MPK.

Name Cycles Description
pkey_alloc() 186.3 Allocate a new pkey
pkey_free() 137.2 Deallocate a pkey
pley_mprotect() 1,104.9 Associate a pkey with a page
pkey_get() 0.5 Get the access rights of a pkey
pkey_set() 23.3 Update the access rights of a pkey

Table 2.1: List of MPK system calls and standard library APIs. [13].

2.4 Zlib

Zlib is a general-purpose, lossless data-compression library providing in-memory compression and

decompression functions [3]. It is by essence a CPU-intensive and memory intensive application,

hence having a large attack surface. Being wildly used (in Debian, iOS, OpenSSL, and nginx just to

cite a few) it is the ideal target for attackers. Some of the applications using it are time-sensitive

applications which could not afford one of their components to suffer from a high performance

penalty, even at the cost of better security. Being a memory intensive library where speed is (for

some) central to its effectiveness, it is a perfect candidate for being isolated in the fastest manner

possible. It uses two stream data structures, one for zlib compression/decompression and one for

gzip; these data structures are the only two for which both the main application and zlib need write

access.

2Here, equivalent is in the context of a single thread, pkey’s permissions being thread-local where mprotect() is
process-wide.

10

Chapter 3

Design

3.1 Original idea

The original idea was to isolate the zlib compression library from the application by splitting the

process memory into two regions, the SAFE one and the SHARED one. The SHARED region was to be

the one used by zlib and the SAFE one was the one used by the rest of the application, for which zlib

would have either no access or read-only access. ZMP would therefore consist of a library that acts

as an intermediary layer between zlib and the main application, bridging them together, as shown

in Figure 3.1. In order to later compare their performance but also to realize the different challenges

that would arise from switching from one system to the other, we wanted to first implement the

memory isolation using mprotect(). Once correclty implemented, we would make use of MPK.

3.2 Isolating the heap

Taking into consideration the granularity of protections, isolating the heap was quite straighforward:

we needed to allocate the memory from the two regions in two distinct memory areas so that

mprotect() could not be called accidentally twice on the same page. For these two regions, we

decided to first create a SAFE heap, (for which all allocations would be made via a custom memory

allocator exported by ZMP) so that we could more keep track of memory to be isolated from the

untrusted component of the application. As both the main application and zlib have read-and-write

access to the SHARED memory area, there is no need for keeping track of its allocations as it will not

benefit from any access restrictions of any kind. We therefore consider any memory allocation made

with the standard library allocator to be assigned to the SHARED heap. One thing we did not consider

was multi-threading. Indeed, multi-threading with mprotect() must be carefully implemented

so that we do not lock a memory region that is being used by another thread; the fact that MPK is

11

Figure 3.1: Schematic layout of ZMP in-between zlib and the main application.

thread-local makes it easier to handle multi-threaded applications. But due to the fact that this is

a key difference between the two techniques, we decided not to assess it as we want to compare

almost strictly equivalent versions of ZMP.

3.3 Isolating the main application

When the main application calls one of zlib routines, it is redirected to the ZMP’s wrapper for that

function (first step of Figure 3.2). Right before actually calling zlib’s API, the wrapper locks the

memory reserved to the main application (second step of Figure 3.2). When the function returns,

restrictions on the locked region are lifted (third phase of Figure 3.2), making the program ready to

12

return to the main application (fourth phase of Figure 3.2). In the meantime, any attempt to access

the SAFE region made by the isolated component will raise a SIGSEGV signal, which will in turn

terminate the process.

3.4 Inserting the wrapper

The wrapper is loaded dynamically but, in its current form, requires that some modifications of the

source code be applied. These modifications include adding the header file after the zlib one and

replacing all allocations to be made secure by the exported zmp_safe_alloc() routine made for

this purpose.

13

Figure 3.2: Schematic view of the four phases happening on a redirected call to a zlib routine by the
main application. 14

Chapter 4

Implementation

At program start, ZMP’s constructor function is called. Its role is to initialize the SAFE memory

region, request a protection-key for the said region if necessary (with the pkey_alloc() syscall)

and load the zlib’s functions that will be wrapped. ZMP interacts with the main application in two

manners. First, it exposes routines to allocate and free 1 memory on the SAFE heap. Second, it wraps

the zlib API. See Table 4.1 for the list of functions exposed by ZMP. Note that not all zlib APIs are

exported; this is because the current implementation only loads (greedily) routines that are used by

the minizip application, presented in chapter 5, in order to not pollute the code with yet unneeded

wrappers.

Name Description
zmp_safe_alloc() Allocates memory on the SAFE heap
zmp_safe_free() Frees memory previously allocated on the SAFE heap
zmp_crc32() Wrapper for crc32()
zmp_get_crc_table() Wrapper for crc_get_table()
zmp_deflateInit2() Wrapper for deflateInit2_()
zmp_deflateBound() Wrapper for deflateBound()
zmp_deflate() Wrapper for deflate()
zmp_deflateEnd() Wrapper for deflateEnd()
zmp_inflateInit2() Wrapper for inflateInit2_()
zmp_inflate() Wrapper for inflate()
zmp_inflateEnd() Wrapper for inflateEnd()

Table 4.1: ZMP’s API. First group of rows are functions for allocation interactions, second group are
wrapping functions of the zlib interface.

1In the current implementation, freeing memory allocated on the SAFE heap has no effect.

15

4.1 ZMP’s heaps

In ZMP, heaps are represented by a simple structure, shown in Listing 4.1. Its allocation process is

very primitive as memory buffers (or allocation blocks) are always allocated on top of each other,

demanding new pages from the OS when the current one has been completely filled, which will not

be freed for the duration of the process. When new pages are requested with the mmap() system

call, they are given read-and-write accesses. The only difference between the mprotect() and the

MPK version is that MPK requires an additional system call to pkey_mprotect() in order to tag the

newly allocated page(s) with the previously reserved protection-key.

1 struct zmp_heap {
2 void *base_address; // starting address of the heap
3 size_t size; // max size of the heap
4 size_t used; // currently used size
5 int protection_key; // used only in MPK mode
6 struct zmp_allocation *allocations_table; // unused
7 };

Listing 4.1: Internal structure containing custom heap’s metadata.

4.2 Isolating zlib

The second type of interaction that the main application has with ZMP is completely transparent

to it, meaning that zlib APIs are wrapped without needing to change any line of code in the main

application, further more, ZMP’s wrapping functions have exactly the same signature, except for

the name. The wrapping and isolating process is the same for all zlib wrapped functions, at the

difference of the return type; its implementation is shown in Listing 4.2. In order to isolate and release

the SAFE memory region when entering and leaving the real zlib’s interface, we make use of two

internal routines, respectively, zmp_mem_lock(), and zmp_mem_release(). Actual implementation

of these functions are different depending on whether the isolation mechanism is implemented

with mprotect() or MPK. Regarding the former, we make use of the mprotect() system call for

modifiyng the protection bits in the PTE, whereas for the latter, we only need to overwrite the PKRU

register with new access rights for SAFE key. This marks the major difference between the two

systems, as there is no intervention from the kernel in the second version. We expect to observe the

consequences of such a difference in our evaluation.

Independently of the applied technique, any unauthorized access to the SAFE memory area will

raise a signal, as displayed in Listing 4.3.

16

1 int wrapper(params)
2 {
3 zmp_mem_lock (); // locks the MAIN memory region
4 int result = wrapped_function(params); // calls zlib’s wrapped

routine
5 zmp_mem_release (); // remove restrictions on MAIN
6 return result;
7 }

Listing 4.2: Example of isolating the MAIN region when calling untrusted zlib routine.

1 int main()
2 {
3 char *shared = malloc (10);
4 char *private = zmp_safe_alloc (10);
5 private [0] = ’1’; // write -access permitted
6

7 zmp_mem_lock (); // SAFE memory locked (No-Access or Read -Only)
8

9 shared [0] = ’1’; // write -access to shared region permitted
10 private [1] = ’2’; // write -access denied | fault
11 }

Listing 4.3: Example of a faulty program that attempts to write in locked SAFE memory.

17

Chapter 5

Evaluation

We conduct a comparative evaluation of the two isolation mechanisms by augmenting the minizip

application with ZMP. Minizip is a small, portable zip and unzip library than can be used in the

command line interface to zip and unzip files. Minizip is tightly bound to zlib, which is at its core.

This makes it an ideal candidate for our evaluation, as it allows to perceive the raw performance of

our wrapper. Moreover, being centered around zlib, it facilitates the process of adjusting the input

in order to benchmark the wrapper under different but specific conditions. Through a series of tests,

we aim to provide a thorough analysis that demonstrates the impact on performance of each system.

We measure (1) an unaltered version of minizip which serves as a reference, (2) the mprotect()
version of the ZMP-enhanced minizip application, and (3) the MPK version.

For that purpose, we had to slightly modify minizip; first, to augment it with our design, but

also to allocate the stream structure (cf. section 2.4) on the heap. This is simply to have a more

heap-centered design, although it is not a necessary change.

We ran our performance tests using the perf stat tool, which allowed us to collect detailed

performance counters. More precisely, we collected the time spent in user-space, the time spent

executing in kernel mode, and the total elapsed time. Our macro-benchmark, which is based on

the minizip’s test suite, is constructed as follows: (1) remove the archive, (2) zip the content of

readme.txt (the input) to test.zip, (3) rename readme.txt to a different name, and (4) unzip the

content of test.zip. The steps stated above account for one round. For a comprehensive analysis,

we run 100 rounds in order to have meaninful results. and display the average of all runs. We run

the benchmark with different input sizes in order to measure the impact on performance of normal

to excessive interaction between the two domains. It is important to note that, in the tested version

of minizip, we allocated the input buffer on the SAFE heap, and that the locking mechanism only

restricts write-access to the SAFE memory region.

Another important point to note is that when receiving a file to compress or decompress, minizip

18

reads it in smaller chunks. Minizip will then call zlib’s functions for each of these chunks, each call

triggering two domain switches. Meaning that the bigger the input is, the more the zlib APIs are

called. For example, zipping a file containing a simple Hello World! message will require 5 of these

calls, a 32kiB 9, whereas an approximately 100MB-long message will require no less than 12500 calls.

This gives us a good insight on how to measure excessive interaction between zlib and the main

application, i.e., excessive amount domain switches.

5.1 First results

We run the our workbench test with three different inputs of size, 32kB, 100MB, and 1GB. We display

the results obtained with inputs of size 100MB and 1GB in Figure 5.1. We decide not to include the

results from the smaller input as they were too fast to be meaningful. We argue that at such speed

(< 5ms), the impact of other events (e.g., from the OS scheduler, from hardware interrupts) is too

high to perceive a real interest. Indeed, our measurements indicated performance impacts ranging

from -1% to 5% when comparing the MPK version with the reference application, which is without

considering excessively high runtimes that were slowed down by an order of magnitude. However,

we noticed a trend averaging around 4-5%, which could be explained by the initialization of ZMP,

having a higher, noticeable weight.

Figure 5.1: Average runtimes for the reference application, the mprotect, and the MPK versions with
input size of 100MB for the left and 1GB for the right part.

Figure 5.2 displays the average time that each instance spent in kernel-space and were measured

in the same run as the ones shown in Figure 5.1. Time spent in kernel mode is an important metric

of our project as it exhibits a key advantage of using memory tagging, MPK in our context, for

partionning a process into multiple regions.

19

Figure 5.2: Average time spent in kernel-space for the reference application, the mprotect, and the
MPK versions with input size of 100MB for the left and 1GB for the right part.

5.2 Adding large allocations

Our analysis found that, for a 100MB input file, 70 to 95% of the heap-allocated memory goes to the

SHARED region. The results showed above being quite promising, we wanted to test if they held in

extreme conditions. We therefore decided to further modify minizip by allocating 4MiB, 128MiB,

and 1GiB on the SAFE heap prior to any interaction with zlib; which would make a significantly

higher amount of pages to manage. Results of these benchmarks, with a 100MB input, are shown in

Figure 5.3.

In the worst case, it has been found that the mprotect() version of ZMP introduced a perfor-

mance overhead of 25% compared to MPK, with time spent in kernel-space being 2.45x higher.

The mprotect() syscall accounting for 74% and 53% of the time spent in system-space for the

compression and decompression part respectively, followed naturally by read() and write().

Results displayed in Figure 5.3 show how insensitive MPK is to the number of pages that need to

be protected, for a fixed input. In comparison, mprotect()’s performance degrades as the amount

of pages in the SAFE memory region increases.

20

Figure 5.3: Average runtimes of the workbench for mprotect and MPK with increasing allocation
size in the SAFE region, and a 100MB payload. MPK displays an almost constant 460ms runtime,
whereas mprotect suffers from a 13% overhead in the assessed range.

21

Chapter 6

Discussion

6.1 Memory isolation with mprotect

Following the results presented in chapter 5, mprotect()-based intra-process memory isolation

seem to rapidly reach limitations in terms of performance. While being a proven technique, it

suffers from a non-negligible performance overhead, strictly increasing with input size 1. In term

of performance only, we argue that mprotect() is not a scalable way to enforce domain-based

restrictions.

6.2 MPK, the new alternative?

We now need to verify, from our own evaluation, the validity of MPK in the context of intra-process

memory isolation. As observed, a light interactivity between the main application and the wrapped

library, especially in the context of an application living around said library, will make the ZMP

initialization perceivable in the runtime metrics. However, results have shown, particularly in

Figure 5.3, that MPK-based memory-isolation is a very scalable feature. Making it a good candidate

for isolating libraries with either a high interaction with the rest of the application or a large set of

data to encapsulate.

1Here, the input size denotes the amount of pages whose corresponding PTE will have to be modifed by the system call.

22

6.3 Portability of ZMP

In the past years, new compression libraries have emerged, of which we can cite LZ4 or Zstd. Being

public, memory intensive, libraries written in an unsafe language, they are at high risk of presenting

memory vulnerabilities and could therefore benefit from memory-tagging. In an attempt to evaluate

the portability of ZMP, we examined Yann Collet’s Zstd. At first sight, Zstd seems to be easily

wrappable by a specially dedicated version of ZMP. However, Zstd’s interface proposes what they

call Advanced experimental functions which should not be dynamically linked. This defeats one of

ZMP’s principle which is to be as transparent as possible. Beyond this aspect, wrapping Zstd’s API

should not pose any problem.

6.4 Future work

6.4.1 Heap allocator and deallocator

As presented in section 4.1, heaps allocations are implemented in an utterly primitive manner. First

and foremost, allocated blocks cannot be freed, which should not be a problem if SAFE memory

should be kept for the lifespan of the application, but can rapidly become an issue otherwise. In a

library whose purpose is to provide performant memory isolation, it appears as a necessity to make

such feature available.

6.4.2 Isolating the stack

Functions that are restricted from writing or reading to the SAFE memory area should not be able to

access the stack frame of trusted routines. The original idea for enforcing this additional protection

measure consisted of padding the stack until the stack pointer is page aligned, so that we could

protect the whole stack up to that point when switching domains. The question that persisted

was, how to efficiently and precisely get the address of the bottom of the stack so that restrictions

are correclty applied. After realizing that we were allowed to read and write to x86’s rsp, and rbp
registers, this questions became way easier to answer: reading the content of rbp in a constructor

function would give good insight on the page the stack is starting from, and overwriting the content

of rsp would allow us to efficiently redirect the stack to a SHARED stack, while enforcing access

restrictions to pages in the range [base_stack_addr, rsp_copy]. However, due to our work

focusing more on heap-based accesses, we decided not to implement this feature for the moment.

23

6.4.3 Large scale application as a test case

While minizip suited our needs for a highly configurable evaluation, it remains that its sole purpose

is to use the wrapped library. An unresolved question is how much of a performance overhead

there would be on large scale application, whose function does not revolve around zlib. As stated in

section 2.4, there are numerous large scale, real-world applications using zlib, which could benefit

from a performant way of isolating their sensitive components.

6.4.4 A more general library

In section 6.3, we discussed the potential portability to other compression libraries. However, there

are more use-cases that could benefit from memory-tagging. Isolation of untrusted components

has been an important topic in the field of software engineering and security for years, different

approaches have been used in the past decades [9, 15] and many novel techniques are coming to

light, which are already using or could use memory-tagging [4, 5, 10, 14].

24

Chapter 7

Conclusion

We have demonstrated that the mprotect() system call cannot be used in a scalable implementation

of intra-process memory-isolation, primarily because of its internal functionnality, being a system

call. Intel’s MPK, on the other hand, provides very performant (cf. Table 2.1) means to modify

page-based permission restrictions whilst remaining in user-space.

Evaluation of the MPK-enhanced version of our library has exhibited very promising results, even

under heavy loads, with a negligible performance overhead (< 0.5%); at the exception of instances

performing minimal operations, during which initialization steps may incur a perceptible overhead

ranging from 0 to 5%, where the runtime is less than 3 milliseconds.

In conclusion, the incorporation of memory-tagging for intra-process memory isolation, partic-

ularly through the utilization of Intel MPK, presents a promising opportunity to mitigate memory-

related vulnerabilities. Through the evaluation we conducted, it becomes evident that such ap-

proaches can be effective, albeit with certain considerations regarding security. As applications

continue to demand higher security, the insight gained from this study can serve as a foundation for

further exploration and optimization.

25

Bibliography

[1] Charly Castes. Diving into Intel MPK. U R L: https://charlycst.github.io/posts/mpk/.

[2] Microsoft Security Response Center. We need a safer systems programming language. 2019.

U R L: https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-
programming-language/ (visited on 06/07/2023).

[3] Jean-loup Gailly and Mark Adler. zlib 1.2.13 Manual. U R L: https://zlib.net/manual.
html.

[4] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard Bugnion. “Enclo-

sure: Language-Based Restriction of Untrusted Libraries”. In: (2021).

[5] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L. Scott,

Kai Shen, and Mike Marty. “Hodor: Intra-Process Isolation for High-Throughput Data Plane

Libraries”. In: USENIX Annual Technical Conference. 2019.

[6] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual. 4.6.2 Protection Keys.

[7] Android Security & Privacy Team Jeff Vander Stoep and Android Media Team Chong Zhang.

Queue the Hardening Enhancements. 2019. U R L: https://security.googleblog.com/
2019/05/queue-hardening-enhancements.html (visited on 06/07/2023).

[8] The Linux Kernel. Memory Protection Keys. U R L: https://www.kernel.org/doc/html/
next/core-api/protection-keys.html.

[9] Douglas Kilpatrick. “Privman: A Library for Partitioning Applications”. In: 2003.

[10] Volodymyr Kuznetsov, Làszlò Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn

Song. “Code-Pointer Integrity”. In: 11th USENIX Symposium on Operating Systems Design

and Implementation. 2014.

[11] Google LLC. Memory Safety. 2018. U R L: https://www.chromium.org/Home/chromium-
security/memory-safety/ (visited on 06/07/2023).

[12] mprotect(2) — Linux manual page. U R L: https://man7.org/linux/man-pages/man2/
mprotect.2.html.

[13] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. “libmpk: Software

Abstraction for Intel Memory Protection Keys (Intel MPK)”. In.

26

https://charlycst.github.io/posts/mpk/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://zlib.net/manual.html
https://zlib.net/manual.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://www.kernel.org/doc/html/next/core-api/protection-keys.html
https://www.kernel.org/doc/html/next/core-api/protection-keys.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://man7.org/linux/man-pages/man2/mprotect.2.html

[14] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter Dr-

uschel, and Deepak Garg. “ERIM: Secure, Efficient In-process Isolation with Protection Keys

(MPK)”. In: 28th USENIX Security Symposium. 2019.

[15] Yongzheng Wu, Sai Sathyanarayan, Roland H. C. Yap, and Zhenkai Liang. “Codejail: Application-

transparent Isolation of Libraries with Tight Program Interactions”. In: European Symposium

on Research in Computer Security. 2012.

27

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Inter-Process Memory Isolation
	Intra-Process Memory Isolation
	MPK
	Zlib

	Design
	Original idea
	Isolating the heap
	Isolating the main application
	Inserting the wrapper

	Implementation
	ZMP's heaps
	Isolating zlib

	Evaluation
	First results
	Adding large allocations

	Discussion
	Memory isolation with mprotect
	MPK, the new alternative?
	Portability of ZMP
	Future work
	Heap allocator and deallocator
	Isolating the stack
	Large scale application as a test case
	A more general library

	Conclusion
	Bibliography

